

Christian Moldaenke, Corina de Hoogh, Arco Wagenvoort, David R. Alexander and Detlev Lohse

Water Monitoring Systems: the Daphnia and Algae Toximeter under the Aspect of Quality Assurance and Routine Practice

Content

- Location and mandate
- Experience of Dutch monitoring working groups with bbe Daphnia Toximeter
- Experience of Dutch monitoring working groups with bbe Algae Toximeter
- Alarm algorithms for different sensor data: the bbe AlViewer

The source: River Meuse

Length: 900 km

Average flow: 325 m³/s

Basin area: 33,000 km²

Population: 7.7 million

Biological monitoring

- Continuous registration
- Acute toxicity
- Effects are measured (behaviour or physiology)
- Sensitive for a wide variety of compounds

BUT

- isn't sensitive for all kinds of compounds
- No alarm is no guarantee for the absence of all hazardous compounds

Monitoring station Keizersveer

- Located upstream of the water-intake (response time)
- Monitoring during intake stop
- Continuous registration of T, O₂, EC, pH and turbidity
- Measuring program (e.g. drinking water ordinance)
- On-line chemical monitoring
- On-line biological monitoring

Daphnia Toximeter

bbe

Mainly insecticides expected

Implementation

- trouble shooting
- validation
- quality assurance
- daily practice

The bbe Daphnia Toximeter

MOLDAENKE

Checklists

Technical status (daily registration)

- any failures registered by the system
- number and size of the daphnids
- air and particles in the chamber
- temperature of sample, pre-heater and fermenter
- detection or recognition-rate

Maintenance

- additional
- weekly
- monthly ——— Operational availability > 90%
- quaterly

Validation: spike test with diazinon [1]

Validation: spike test with diazinon [2]

Delay of alarm

- dead volume of the system (monitoring station)
- response of alarm evaluating software
- **Alarms not permanent**
- Alarms generated due to changing conditions

Quality assurance [1]

- Quality assurance of total configuration
- Responses should be reliable and reproducible
- Control sample: 5 g NaCl/L
- Time to alarm is control parameter
- Evaluation of responding parameters

Quality assurance [2]

Procedure: alarm evaluation

Evaluation of alarms

- daily practice
 - technical status
 - parameters causing the alarm
 - history and present parameter values
- results of other on-line detectors
- Minimum duration of intake stop: 24 hours
- Determination of the end of alarm
 - chemical analysis
 - evaluate data with new batch of daphnids
- Alarm is disabled after
 - determined toxicant is below its limit, OR
 - data of daphnids are in "normal range"
- Normal monitoring is restarted

bbe Algae Toximeter

bbe

MOLDAENKE

Monitored Parameters of the bbe Algae Toximeter

bbe

MOLDAENKI

- Inhibition (reduction of oxygen evolution by fluorescence measurement)
- **chlorophyll content**
- ■algae class analysis (automatic determination of green algae, diatoms/dinoflagellates, cryptophytae, blue-green algae (cyanobacteria, more than 50% of all species of cyanobacteria are toxic)
- **■**transmission

Daily practice (Technical status) 2 checklists bbe

MOLDAENKI

Technical status (daily registration)

- any failures registered by the system
- temperature of the fermenter
- transmission
- total and active chlorophyll of algae in the fermenter
- growth rate of algae
- dose rate of nutrients

Maintenance

- additional
- weekly
- monthly
- quaterly

Operational availability > 85%

Daily practice (Water quality)

Water quality (checklist)

- alarm (inhibition, Hinkley and limit)
- inhibition
- chlorophyll in sample
- green algae, cyanobacteria, diatoms, cryptophytes
- chlorophyll of sample compared with chlorophyll determined with Dutch standard method

Validation: spike tests with diuron

Quality assurance [1]

- Quality assurance of total configuration
- Responses should be reliable and reproducible
- Control sample: 2 µg diuron/l
- Inhibition is measured for 2 hours
- Reference water test (reference connected as sample)
- Determination of noise

Quality assurance [2]

- Microscopic of algae
- Determination of inhibition of control sample
- Determination of noise (reference water)

Detection limit (3 x sd)

Chlorella sp.

Quality assurance [3] Response of control sample

Quality assurance [4] Determination of noise

Knowledge exchange

- Dutch working group on operational aspects
- Dutch steering group on standardisation, validation and quality assurance
- Plans:
 - website
 - database with problems and solutions
 - thematic workshops
- Research in collaboration with AwwaRF and for the Dutch Ministry of Environment

The bbe AlViewer

Multi Parameter Event Analyzer and Detector

Real time analysis for multiple sensor readings to detect significant events

Alarm Recognition from Traditional Sensors

a software which

- uses signals from various (existing) sensors like temperature, 254 nm-absorption), pH
- detects sudden changes in any signal
- combines the event evaluation from different signals to detect alarm events while also limiting false alarms
- compensates for drift (e.g. diurnal shift of temperature)
- **■** is simply to include in existing data collecting systems

MOLDAENKE

Text File Format

timestamp	рН	conductivity	Redox	Oxygen
	r.u.	μs/cm	mV	mg/l
dd.mm.yyyy hh:mm:ss	7.21	430	16.23	12.76

Composition of the Alarm Index (AI)

evaluation parameters (examples) sum **40** conductivity 40 redox potential **Alarm** temperature Index 30 pH threshold=100 **20** oxygen **30** lower limit oxygen blocks decreased conductivity

Composition of the Alarm Index (AI) (3)

MOLDAENKE

Conclusions

- Quality assurance is essential and increases acceptance
- ■Periodic checks increase operational availability and reliability
- ■Comparability of monitoring is enhanced by consent of parameters
- ■Including different parameters beside biomonitoring enhances quality of alarm recognition